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Brief History of Linear Programming
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� The goal of linear programming is to determine the values 
of decision variables that maximize or minimize a linear 
objective function, where the decision variables are 
subject to linear constraints. 

� A linear programming problem is a special case of a 
general constrained optimization problem. The objective 
function is linear, and the set of feasible points is 
determined by a set of linear equations and/or inequalities. 
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� The solution to a linear programming problem can be found by 
searching through a particular finite number of feasible points, 
known as basic feasible solutions. 

� We can simply compare the basic feasible solutions and find 
one that minimizes or maximizes the objective function –
brute-force approach. 

� An alternative approach is to use experienced planners to 
optimize this problem. Such an approach relies on heuristics. 
Heuristics come close, but give suboptimal answers. 
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� Efficient methods became available in the late 1930s. 

� In 1939, Kantorovich presented a number of solutions to some 
problems related to production and transportation planning. 

� During World War II, Koopmans contributed significantly to 
the solution of transportation problems. 

� They were awarded a Nobel Prize in Economics in 1975 for 
their work on the theory of optimal allocation of resources. 

� In 1947, Dantzig developed the simplex method. 
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� The simplex method has the undesirable property that in the 
worst case, the number of steps required to find a solution 
grows exponentially with the number of variables. Thus, the 
simplex method is said to have exponential worst-case 
complexity. 

� Khachiyan, in 1979, devise a polynomial complexity algorithm. 
In 1984, Karmarkar proposed a new linear programming 
algorithm that has polynomial complexity and appears to solve 
some complicated real-world problems of scheduling, routing, 
and planning more efficiently than the simplex method. His 
work led to the development of many interior-point methods. 
This approach is currently still an active research area. 
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� Formally, a linear program is an optimization problem of the 
form 

where                                        . The vector inequality           
means that each component of      is nonnegative. 

� Several variations of this problem are possible. For example, 
we can maximize, or the constraints may be in the form of 
inequalities, such as              or             . In fact, these variations 
can all be rewritten into the standard form shown above. 
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� A manufacturer produces four different products: 
there are three inputs to this production process: labor in person-weeks, 
kilograms of raw material A, and boxes of raw material B. Each product has 
different input requirements. In determining each week’s production 
schedule, the manufacturer cannot use more than the available amounts of 
labor and the two raw materials. The relevant information is presented in 
this table. Every production decision must satisfy the restrictions on the 
availability of inputs. These constraints can be written using the data in this 
table. 
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� Because negative production levels are not meaningful, we 
must impose the following nonnegativity constraints on the 
production levels: 

� Now, suppose that one unit of product      sells for $6, and 
sell for $4, $7, $5, respectively. Then, the total 

revenue for any production decision                     is 

� The problem is then to maximize    subject to the given 
constraints (the three inequalities and four nonnegativity
constraints). 
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� Using vector notation with                             , the problem can 
be written in the compact form 

where 
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� Diet Problem. Assume that     different food types are available. 
The   th food sells at a price      per unit. In addition, there are 
basic nutrients. To achieve a balanced diet, you must receive at 
least     units of the   th nutrient per day. Assume that each unit 
of food     contains       units of the    th nutrient. Denote by 
the number of units of food    in the diet. The objective is to 
select the       to minimize the total cost of the diet:

subject to the nutritional constraints, and the nonnegativity
constraints
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� In the more compact vector notation, this problem becomes 

where                              is an    -dimensional column vector, 
is an    -dimensional row vector,     is an            matrix, and 

is an    -dimensional column vector. 
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� A manufacturer produces two different products,           , using 
three machines:                  . Each machine can be used for only 
a limited amount of time. Production times of each product on 
each machine are given in this table. The objective is to 
maximize the combined time of utilization of all three 
machines. 

� Every production decision must satisfy the constraints on the 
available time. These restrictions can be written as
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� The combined production time of all three machines is 

� Thus, writing                   , the problem in compact notation has 
the form

where  
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� A manufacturing companying has plants in cities A, B, and C. 
The company produces and distributes its product to dealers in 
various cities. On a particular day, the company has 30 units of 
its product in A, 40 in B, and 30 in C. The company plans to 
ship 20 units to D, 20 to E, 25 to F, and 35 to G, following 
orders received from dealers. The transportation costs per unit 
of each product between the cities are given in this table. In the 
table, the quantities supplied and demand appear at the right 
and along the bottom of the table. The quantities to be 
transported from the plants to 
different destinations are 
represented by the decision 
variables. 
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� The problem can be stated in the form
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� In this problem one of the constraint equations is redundant 
because it can be derived from the rest of the constraint 
equations. The mathematical formulation of the transportation 
problem is then in a linear programming form with twelve 
decision variables and six                 linearly independent 
constraint equations. Obviously, we also require nonnegativity
of the decision variables, since a negative shipment is 
impossible and does not have a valid interpretation. 
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� An electric circuit is designed to use a 30-V source to charge 
10-V, 6-V, and 20-V batteries connected in parallel. Physical 
constraints limit the currents                      to a maximum of 4A, 
3A, 3A, 2A, and 2A, respectively. In addition, the batteries 
must not be discharged; that is, the currents                      must 
not be negative. We wish to find the values of the currents such 
that the total power transferred to the batteries is maximized. 
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� The total power transferred to the batteries is the sum of the 
powers transferred to each battery and is given by 

W. From the circuit, we observe that the currents 
satisfy the constraints                   and                  . Therefore, the 
problem can be posed as the following linear program: 
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� Consider the wireless communication system. There are     
mobile users. For each                , user    transmits a signal to 
the base station with power     and an attenuation factor of 
(i.e., the actual signal power received at the base station from 
user     is       ). When the base station is receiving from user 
the total power received from all other users is considered 
interference (i.e.,                ). For the communication with user 
to be reliable, the signal-to-interference ratio must exceed a 
threshold     , where the “signal” is the power received from 
user    . 
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� We are interested in minimizing the total power transmitted by 
all users subject to having reliable communication for all users. 
We can formulate the problem as a linear programming 
problem of the form 

� The total power transmitted is                    . The signal-to-
interference ratio for user 
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� Hence, the problem can be written as 

� We can write the above as the linear programming problem

� In matrix form, 
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� Consider the following linear program

where                    and 

� First, we note that the set of equations 
specifies a family of straight lines in      . Each member of this 
family can be obtained by setting    equal to some real number. 
Thus, for example,                      ,                   , and 
are three parallel lines belonging to the family. 
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� Now, suppose that we try to choose several values for     and 
and observe how large we can make    while still satisfying the 
constraints on      and    . We first try           and           . This 
point satisfies the constraints. For this point,           . If we now 
select            and          , then            and this point yields a 
larger value for    than does                . There are infinitely 
many points              satisfying the constraints. Therefore, we 
need a better method than trial and error to solve the problem. 
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� For the example above we can easily solve the problem using 
geometric arguments. First let us sketch the constraints in      . 
The region of feasible points (the set of points     satisfying the 
constraints             ,           ) is depicted by the shaded region in 
this figure. 

� Geometrically, maximizing 
subject to the 

constraints can be thought of as 
finding the straight line 

that intersects the 
shaded region and has the largest

. The point          is the solution.
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� Suppose that you are given two different types of concrete. The 
first type contains 30% cement, 40% gravel, and 30% sand (all 
percentages of weight). The second type contains 10% cement, 
20% gravel, and 70% sand. The first type of concrete costs $5 
per pound and the second type costs $1 per pound. How many 
pounds of each type of concrete should you buy and mix 
together so that your cost is minimized but you get a concrete 
mixture that has at least a total of 5 pounds of cement, 3 
pounds of gravel, and 4 pounds of sand? 
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� The problem can be represented as 

� Using the graphical method described above, we get a solution 
of            , which means that we would purchase 50 pounds of 
the second type of concrete. 

� In some case, there may be more than one point of intersection, 
and therefore any one of them is a solution. 
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� We discuss linear programs from a geometric point of view. 
The set of points satisfying these constraints can be represented 
as the intersection of a finite number of closed half-spaces. 
Thus, the constraints define a convex polytope. 

� We assume, for simplicity, that this polytope is nonempty and 
bounded. In other words, the equations of constraints define a 
polyhedron      in     . Let     be a hyperplane of support of this 
polyhedron. If the dimension of      is less than    , then the set 
of all points common to the hyperplane and the polyhedron 

coincides with     . 
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� If the dimension of      is equal to    , then the set of all points 
common to the hyperplane and the polyhedron     is a face of 
the polyhedron. If this face is           -dimensional, then there 
exists only one hyperplane of support, namely, the carrier of 
this face. If the dimension of the face is less than         , then 
there exist an infinite number of hyperplanes of support whose 
intersection with this polyhedron yields this face. 
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� The goal of our linear programming problem is to maximize a 
linear objective function                                              on the 
convex polyhedron      . Next, let     be the hyperplane defined 
by the equation              . Draw a hyperplane of support      to 
the polyhedron    , which is parallel to      and positioned such 
that the vector     points in the direction of the half-space that 
does not contain     .
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� The equation of the hyperplane has the form              , and 
for all            , we have               . Denote by      the convex 
polyhedron that is the intersection of the hyperplane of support 

with the polyhedron    . We now show that    is constant on 
and that      is the set of all points in      for which    attains its 
maximum value. To this end, let     and     be two arbitrary 
points in      . This implies that both     and     belong to    . 
Hence, 

which means that     is 
constant on     . 
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� Let     be a point of     , and let     be a point of            ; that is, 
is a point of      that does not belong to     . Then, 

which implies that 

� Thus, the values of     at the points of      that do not belong to 
are smaller than the values at points of     . Hence,    achieves 
its maximum on      at points in     . 
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� It may happen that      contains only a single point, in which 
case    achieves its maximum at a unique point. 

� This occurs when the hyperplane of support passes through an 
extreme point of     . 
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� We refer to a linear program of the form 

as a linear program in standard form. Here is an            
matrix composed of real entries,           , 

� Without loss of generality, we assume that          . If a 
component of     is negative, say the    th component, we 
multiply the   th constraint by -1 to obtain a positive right-hand 
side. 
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� Theorems and solution techniques for linear programs are 
usually stated for problems in standard form. Other forms of 
linear programs can be converted to the standard form. 

� If a linear program is in the form

then by introducing surplus variables , we can convert the 
original problem into the standard form 
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� In more compact notation, the formulation above can be 
represented as 

where       is the             identity matrix. 
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� If, on the other hand, the constraints have the form 

then we introduce slack variables to convert the constraints 
into the form 

where     is the vector of slack variables. Note that neither 
surplus nor slack variables contribute to the objective function 
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� At first glace, it may appear that the two problems 

are different, in that the first problem
refers to the intersection of half-spaces in the    -dimensional 
space, whereas the second problem refers to an intersection of 
half-spaces and hyperplanes in the             -dimensional space. 
It turns out that both formulations are algebraically equivalent 
in the sense that a solution to one of the problems implies a 
solution to the other. 
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� Suppose that we are given the inequality constraint           . We 
convert this to an equality constraint by introducing a slack 
variable            to obtain

� Consider the sets                             and 
Are the sets       and       equal? It is clear that indeed they are; 
we give a geometric interpretation for their equality. 

� Consider a third set                                                     . From this 
figure we can see that the set        consists of all points on the 
line to the left and above the point of 
intersection of the line with the

-axis. 
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� This set, being a subset of     , is of course not the same set as 
the set      (a subset of    ). However, we can project the set 
onto the     -axis. We can associate with each point 
a point            on the orthogonal projection of      onto the 

-axis, and vice versa. Note that 
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� Consider the inequality constraints 

where             are positive numbers. Again, we introduce a 
slack variable             to get 

Define the sets

We again see that       is not the same as      . However, the 
orthogonal projection of       onto the            -plane allows us to 
associate the resulting set with the set      . 
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� We associate the points                 resulting from the orthogonal 
projection of       onto the            -plane with the points in      . 
Note that
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� Suppose that we wish to maximize 

subject to the constraints 

where, for simplicity, we assume that each             and 
The set of feasible points is depicted in this figure. Let
be the set of points satisfying the constraints. 
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� Introducing a slack variable, we convert the constraints into 
standard form: 

� Let               be the set of points satisfying the constraints. As 
illustrated in this figure, this set is a line segment (in     ). We 
now project       onto the            -plane. The projected set 
consists of the points                , with                          for some

. In this figure this set is marked by 
a heavy line in the            -plane. We can 
associate the points on the projection 
with the corresponding points 
in the set 
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� Consider the following optimization problem 

� To convert the problem into a standard form linear 
programming problem, we perform the following steps: 
� 1. Change the objective function to: 

� 2. Substitute 

� 3. Write                as               and 

� 4. Introduce slack variables            , and convert the inequalities 
above to                      and 

� 5. Write 
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� Hence, we obtain 
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� In the following discussion we only consider linear 
programming problems in standard form. 

� Consider the system of equalities             , where 
In dealing with this system of equations, we frequently need to 
consider a subset of columns of the matrix    . For convenience, 
we often reorder the columns of     so that the columns we are 
interested in appear first. 

� Specifically, let     be a square matrix whose columns are      
linearly independent columns of     . 
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� If necessary, we reorder the columns of      so that the columns 
in      appear first:       has the form                  , where      is an 

matrix whose columns are the remaining columns 
of    . The matrix      is nonsingular, and thus we can solve the 
equation                for the      -vector      . The solution is 

. Let     be the    -vector whose first      components 
are equal to       and the remaining components are equal to 
zero; that is,                     . Then,     is a solution to 
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� Definition 15.1: We call                      a basic solution to 
with respect to the basis . We refer to the components of the 
vector       as basic variables and the columns of       as basic 
columns. 

� If some of the basic variables of a basic solution are zero, then 
the basic solution is said to be a degenerate basic solution. 

� A vector     satisfying              ,           , is said to be a feasible 
solution. 

� A feasible solution that is also basic is called a basic feasible 
solution. 

� If the basic feasible solution is a degenerate basic solution, then 
it is called a degenerate basic feasible solution. 

� Note that in any basic feasible solution, 
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� Consider the equation 

where      denotes the    th column of the matrix  

� Then,                        is a basic feasible solution with respect to 
the basis                   ,                        is a degenerate basic 
feasible solution with respect to the basis                    (as well 
as             and           ),                        is a feasible solution that 
is not basic, and                          is a basic solution with respect 
to the basis                   , but is not feasible. 
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� Consider the system of linear equations             , where 

We now find all solutions of this system. Note that every 
solution      of              has the form                 , where     is a 
particular solution of              and      is a solution to 

� We form the augmented matrix          of the system 

Using elementary row operations, we transform this matrix into 
the form given by 
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� The corresponding system of equations is given by 

� Solving for the leading unknowns       and      , we obtain

where      and      are arbitrary real numbers. If                        is 
a solution, then we have 

where we have substituted    and    for      and     , respectively. 
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� Using vector notation, we may write the system of equations 
above as 

� Note that we have infinitely many solutions, parameterized by
. For the choice                we obtain a particular solution 

to             , given by 
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� Any other solution has the form           , where 

� The total number of possible basic solution is at most 

to find basic solutions that are feasible, we check each of the 
basic solutions for feasibility. 
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� Our first candidate for a basic feasible solution is obtained by 
setting                   , which corresponds to the basis
Solving               , we obtain                              , and hence 

is a basic solution that is not feasible. 

� For our second candidate basic feasible solution, we set 
. We have the basis                   . Solving 

yields                           . Hence,                               is a basic 
feasible solution. 

� A third candidate basic feasible solution is obtained by setting
. However, the matrix 

is singular. Therefore,      cannot be a basis, and we do not have 
a basic solution corresponding to  
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� We get our fourth candidate for a basic solution by setting 
. We have a basis                  , resulting in 

, which is a basic feasible solution. 

� Our fifth candidate for a basic feasible solution corresponds to 
setting                 , with the basis 
This results in                                  , which is a basic solution 
that is not feasible. 

� Finally, the sixth candidate for a basic feasible solution is 
obtained by setting                  . This results in the basis 

, and                               , which is a basic solution 
but is not feasible. 
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� Definition 15.2: Any vector     that yields the minimum value 
of the objective function         over the set of vectors satisfying 
the constraints                      , is said to be an optimal feasible 
solution. An optimal feasible solution that is basic is said to be 
an optimal basic feasible solution. 

� Theorem 15.1: Fundamental Theorem of LP. Consider a 
linear program in standard form
� 1. If there exists a feasible solution, then there exists a basic feasible 

solution

� 2. If there exists an optimal feasible solution, then there exists an 
optimal basic feasible solution. 
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� Suppose that                        is a feasible solution and it has     
positive components. Without loss of generality, we can 
assume that the first     components are positive, whereas the 
remaining components are zero. Then, in terms of the columns 
of                                 , this solution satisfies 

There are now two cases to consider. 

� Case 1: If                   are linearly independent, then           . If 
, then the solution    is basic and the proof is done. If 

then, since                     , we can find           columns of      from 
the remaining           columns so that the resulting set of      
columns forms a basis. Hence, the solution     is a (degenerate) 
basic feasible solution corresponding to the basis above. 
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� Case 2: Assume that                    are linearly dependent. Then, 
there exist numbers                    , not all zero, such that 

We can assume that there exists at least one     that is positive, 
for if all the     are nonpositive, we can multiply the equation 
above by -1. Multiply the equation by a scalar    and subtract 
the resulting equation from                                           to obtain

Let                                 . Then, for any    we can write 
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� Let                                                  . Then, the first     
components of             are nonnegative, and at least one of 
these components is zero. We then have a feasible solution with 
at most          positive components. We can repeat this process 
until we get linearly independent columns of     , after which 
we are back to case 1. Therefore, part 1 is proved. 
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� We now prove part 2. Suppose that                         is an optimal 
feasible solution and only the first     variables are nonzero. 
Then, we have two cases to consider. 

� The first case is exactly the same as part 1.

� The second case follows the same arguments as in part 1, but in 
addition we must show that             is optimal for any   . We do 
this by showing that              . To this end, assume that 
Note that for    of sufficiently small magnitude 

, the vector             is feasible. 
We can choose    such that                                                . This 
contradicts the optimality of    . We can now use the procedure 
from part 1 to obtain an optimal basic feasible solution from a 
given optimal feasible solution. 
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� Consider the system of equations

Find a nonbasic feasible solution to this system and use the 
method in the proof of the fundamental theorem of LP to find a 
basic feasible solution. 

� Recall that solutions for the system have the form

where             . Note that if                 , then 
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� There are constants                      , such that 

� For example, let                                 . Note that 
where 
If            , then 

is a basic feasible solution.
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� Observe that the fundamental theorem of LP reduces the task of 
solving a linear programming problem to that of searching over 
a finite number of basic feasible solution. That is, we need only 
check basic feasible solutions for optimality. 

� As mentioned before, the total number of basic solutions is at 
most 

Although this number is finite, it may be quite large. For 
example: 
Therefore, a more efficient method of solving linear programs 
is needed. To this end, we next analyze a geometric 
interpretation of the fundamental theorem of LP. 
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� Recall that a set              is said to be convex if, for every 
and every real number                   , the point 
In other words, a set is convex if given two points in the set, 
every point on the linear segment joining these two points is 
also a member of the set. 

� Note that the set of points satisfying the constraints
is convex. To see this, let           satisfy the constraints. Then, 
for all               , 
Also, for               , we have 
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� Recall that a point     in a convex set     is said to be an extreme 
point of     if there are no two distinct points      and      in     
such that                                for some              . In other words, 
an extreme point is a point that does not lie strictly within the 
line segment connecting two other points of the set. Therefore, 
if     is an extreme point, and                                for some 
and               , then             . In the following theorem we show 
that extreme points of the constraint set are equivalent to basic 
feasible solutions. 
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� Theorem 15.2: Let     be the convex set consisting of all 
feasible solutions, that is, all    -vector    satisfying 
where                 ,             . Then,     is an extreme point of      if 
and only if      is a basic feasible solution to 

� Form this theorem, it follows that the set of extreme points of 
the constraint set is equal to the set of basic feasible solutions. 

� Combining this observation with the fundamental theorem of 
LP (Theorem 15.1), we can see that in solving linear 
programming problems we need only examine the extreme 
points of the constraint set. 
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� Consider the following LP problem

We introduce slack variables               to convert this LP 
problem into standard form 
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� In the remainder of the example we consider only the problem 
in standard form. We can represent the constraints above as

that is,                                                                  . Note that 
is a feasible solution. But for this    , the 

value of the objective function is zero. We already know that 
the minimum of the objective function (if it exists) is achieved 
at an extreme point of the constraint set     defined by the 
constraints. The point                        is an extreme point of the 
set of feasible solutions, but it turns out that it does not 
minimize the objective function. 
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� Therefore, we need to seek the solution among the other 
extreme points. To do this we move from one extreme point to 
an adjacent extreme point such that the value of the objective 
function decreases. Here, we define two extreme points to be 
adjacent if the corresponding basic columns differ by only one 
vector. 

� We begin with                              . We have 
. To select an adjacent extreme 

point, let us choose to include      as a basic column in the new 
basis. We need to remove either     ,     , or      from the old basis. 
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� We first express      as a linear combination of the old basic 
columns:                                . Multiplying both sides of this 
equation by          , we get 

� We now add this equation to the equation 
. Collecting terms yields 

We want to choose     in such a way that each of the 
coefficients above is nonnegative and at the same time, one of 
the coefficients     ,     , or      becomes zero. Clearly,            
does the job. The result is                                 . The 
corresponding basic feasible solution (extreme point) is 

. For this solution, the objective function value is 
-30, which is an improvement relative to the objective function 
value at the old extreme point. 
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� We now apply the same procedure as above to move to another 
adjacent extreme point, which hopefully further decreases the 
value of the objective function. This time, we choose      to 
enter the new basis. We have 
and 

Substituting          , we obtain 
The solution is                     and the corresponding value of the 
objective function is -44, which is smaller than the value at the 
previous extreme point. 
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� To complete the example we repeat the procedure once more. 
This time, we select      and express it as a combination of the 
vectors in the previous basis,     ,     , and     : 
and hence 

The largest permissible value for      is 3. The corresponding 
basic feasible solution is                   , with an objective function 
of -50. The solution                     turns out to be an optimal 
solution to our problem in standard form. Hence, the solution 
to the original problem is           , which we can easily obtain 
graphically. 
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� The technique used in this example for moving from one 
extreme point to an adjacent extreme point is also used in the 
simplex method for solving LP problems. The simplex method 
is essentially a refined method of performing these 
manipulations. 


