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Brief History of Linear Programming

» The goal of linear programming is to determinevhkies
of decision variables that maximize or minimizengar
objective function, where the decision variables ar
subject to linear constraints.

» Alinear programming problem is a special case of a
general constrained optimization problem. The dbjec
function is linear, and the set of feasible poiats
determined by a set of linear equations and/oruakties.



Brief History of Linear Programming

» The solution to a linear programming problem can be found by
searching through a particular finite number of feasible points,
known asdasic feasible solutions.

» We can simply compare the basic feasible solutions and find
one that minimizes or maximizes the objective function —
brute-force approach.

» An alternative approach is to use experienced planners to
optimize this problem. Such an approach relies on heuristics.
Heuristics come close, but give suboptimal answers.



Brief History of Linear Programming

» Efficient methods became available in the late 1930s.

» In 1939, Kantorovich presented a number of solutions to some
problems related to production and transportation planning.

» During World War |I, Koopmans contributed significantly to
the solution of transportation problems.

» They were awarded a Nobel Prize in Economics in 1975 for
their work on the theory of optimal allocation of resources.

» In 1947, Dantzig developed tisamplex method.



Brief History of Linear Programming

» The simplex method has the undesirable property that in the
worst case, the number of steps required to find a solution
grows exponentially with the number of variables. Thus, the
simplex method is said to haeeponential worst-case
compl exity.

» Khachiyan, in 1979, devise a polynomial complexity algorithm.
In 1984, Karmarkar proposed a new linear programming
algorithm that has polynomial complexity and appears to solve
some complicated real-world problems of scheduling, routing,
and planning more efficiently than the simplex method. His
work led to the development of mamgerior-point methods.

This approach is currently still an active research area.



Simple Examples of Linear Programs

» Formally, a linear program is an optimization problem of the

form

minimize clx

subject to Ax=b x>0

wherec e R"be R",;A € R™" |, The vector inequalityo
means that each componentef is nonnegative.

» Several variations of this problem are possible. For example,
we can maximize, or the constraints may be in the form of
iInequalities, such agx >b Ak <b . In fact, these variations
can all be rewritten into the standard form shown above.



Example

» A manufacturer produces four different products; X,, X3, X4
there are three inputs to this production prodessir in person-weeks,
kilograms of raw material A, and boxes of raw miald8. Each product has
different input requirements. In determining eaaeWs production
schedule, the manufacturer cannot use more thaawtikable amounts of
labor and the two raw materials. The relevant mi@won is presented in
this table. Every production decision must satiefyrestrictions on the
availability of inputs. These constraints can bétem using the data in this

table.
x1+ 229 + 13+ 224 < 20 Products Input
6x1 + 59 + 3x3 + 224 < 100 Inputs X: Xo Xs X4 Availabilities
3x1 + 4x9 + 9z + 12204 < 75 man weeks 1 2 1 2 20
kilograms of material A 6 5 3 2 100
boxes of material B 3 4 9 12 75

production levels 1 To Tz Iy




Example

4

Because negative production levels are not meaningful, we
must impose the following nonnegativity constraints on the
production levelsz; > 0,i =1,2,3,4

Now, suppose that one unit of produgt  sells for $6, and
X», X3, Xy sell for $4, $7, $5, respectively. Then, the total
revenue for any production decisiQn, z,, x5, ) IS

f(x1, 29, 23, 4) = 621 + 49 + T3 + Dy

The problem is then to maximiZze subject to the given
constraints (the three inequalities and four nonnegativity
constraints).



Example

» Using vector notation withe = [z, 25, 23, 24" , the problem can

be written in the compact form

maximize clax

subject to Ax<b x>0

where | 1921 2 C90
c'=106,4,75 A=1653 2 b= |100
34912 |75




Example

» Diet Problem. Assume that. different food types are available.
The jth food sells at a price  per unit. In addition, therenare
basic nutrients. To achieve a balanced diet, you must receive at
leasty, units of the th nutrient per day. Assume that each unit
of food j; contains,;; units of the th nutrient. Denote by
the number of units of foofl in the diet. The objective is to
select thez; to minimize the total cost of the diet:

minimize cjxy; + coxs + -+ Ty,
subject to the nutritional constraints, and the nonnegativity
constraints

1101 + a12T2 + -+ + 1Ty > by
a1 %1 + T + - -+ + ATy > by ry 20,290 20,...,20, 20

Am1L1 + Am2L2 + -+ AmnLn Z bm

10



Example

» In the more compact vector notation, this problem becomes

minimize clx

subject to Axz>b x>0
where ¢ = [z, 29, ...,2,)7 IS@an -dimensional column vector,
c' 1S ann -dimensional row vectod, IS anx n matrix, and

b IS anm -dimensional column vector.

11



Example

» A manufacturer produces two different products,.x, , using
three machinesis,, M,, M; . Each machine can be used for only
a limited amount of time. Production times of each product on
each machine are given in this table. The objective is to

maximize the combined time of utilization of all three
machines.

» Every production decision must satisfy the constraints on the
available time. These restrictions can be written as
T1+ a9 <8

1+ 3ry < 18

2T + 10 < 14 Production time (hours/unit) Available time
o Machine X1 Xs (hours)

8
18
14

x1 and 9 denote the production levels My

12
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Example

» The combined production time of all three machines is
f(a:l, 332) — 4331 + 5(]32

» Thus, writingz = [z, 25|7 , the problem in compact notation has

the form T

maximize cC'x

subject to Ax<b x>0
where

11
c' =[4,5 A= |13 b=|18
2 1 14

13



Example

» A manufacturing companying has plants in cities A, B, and C.
The company produces and distributes its product to dealers in
various cities. On a particular day, the company has 30 units of
Its product in A, 40 in B, and 30 in C. The company plans to
ship 20 units to D, 20 to E, 25 to F, and 35 to G, following
orders received from dealers. The transportation costs per unit
of each product between the cities are given in this table. In the
table, the quantities supplied and demand appear at the right
and along the bottom of the table. The quantities to be
tr_ansported fr_om_the plants to o D E F G Suply
different destinations are From
rep_resented by the decision N 7 $10 14 S8 30
variables. B §7 S$I11 $12 $6 40

C $5 $8 $15 %9 30
14 Demand 20 20 25 35 100




Example

» The problem can be stated in the form

minimize 7211 + 10x19 + 14213 + 814 + 7291 + 11299 + 12293 + G694 +
Dx31 + 8x39 + 15233 + 934

subject to 11 + 12 + 13 + 114 = 30
To1 + Tog + Tog + Loy = 40

T3] + T39 + 33 + x34 = 30

11 + o1 + 231 = 20

T12 + T + T30 = 20

X13 + Loz + X33 = 20

T14 + Tog + T34 = 3D

T11, X12, -, T34 =

15



Example

» In this problem one of the constraint equations is redundant
because it can be derived from the rest of the constraint
equations. The mathematical formulation of the transportation
problem is then in a linear programming form with twelve 4)
decision variables and six+ 4 — 1) linearly independent
constraint equations. Obviously, we also require nonnegativity
of the decision variables, since a negative shipment is
Impossible and does not have a valid interpretation.

16



Example

» An electric circuit is designed to use a 30-V source to charge
10-V, 6-V, and 20-V batteries connected in parallel. Physical
constraints limit the currents, I, I5, 14, I; to a maximum of 4A,
3A, 3A, 2A, and 2A, respectively. In addition, the batteries
must not be discharged; that is, the currents, 1, 14, I; must
not be negative. We wish to find the values of the currents such
that the total power transferred to the batteries is maximized.

R Rj Rs

—_— — —_—
l4 i3 Is
30 (4-) 12 1 Ry l4 l Ry
Volts\ "
Battery —— 10 Battery —— 6 Battery —— 20
T Volts T Voits T Volts
17




Example

» The total power transferred to the batteries is the sum of the

powers transferred to each battery and is given by
101, + 61, + 2015 W. From the circuit, we observe that the currents

satisfy the constraints = I, + I; ane I, + I . Therefore, the
problem can be posed as the following linear program:
maximize 101y + 614 + 2015

subject to Iy = Iy + I3 R, Ra Rs
I3 = 14+ I5 A _'\_ﬁ/\',., A
Iy ig Is
I <4
| |
I <3 RO 1 Zn i &
[3 S 3 Battery —:___-— 10 Battey —— . Battey —— ,
14 S 2 T Volts —:—_Volls —__Volls
Iy <2

[1) ]27 ]37 [47 [5 2 0

18



Example

» Consider the wireless communication system. There are
mobile users. Foreach-1,...n , user transmits a signal to
the base station with powgr and an attenuation factor of
(.e., the actual signal power received at the base station from
useri Ish;p; ). When the base station is receiving from;user
the total power received from all other users is considered
interference (i.e., 2_, "p; ). For the communication with user
to be reliable, the signal-to-interference ratio must exceed a
thresholdy: , where the “signal” is the power received from
useri .

Base

Station P
N = 7

: - Lo

User 1 User 2 User 3




Example

» We are interested in minimizing the total power transmitted by
all users subject to having reliable communication for all users.
We can formulate the problem as a linear programming

problem of the form
minimize c’x
subject to Ax>b x>0

» The total power transmitted is + - - - + p,, . The signal-to-
Interference ratio for user
hip;
D jzi D

20



Example

» Hence, the problem can be written as
minimize py + - -+ + pp
hip;
iz hip;
P1, -y Pn 2 0

» We can write the above as the linear programming problem
minimize py + -+ + pp

subject to hip; — i )i hypj > C 1=1,...n

subject to > i=1,...n

. Ply -y Pp > 0
» In matrix form,
c=11,..,1"
hi  —yihy -+ —yihy,|
A —V:2h1 ha —7:2hn
__’ynhl —VnhQ hn a

21



Two-Dimensional Linear Programs

» Consider the following linear program

maximize clax

subject to Ax <b x>0
whereg = [z,,z,)7 and

c=1[1,5" A= E g] b= Eg]

» First, we note that the set of equatiqRsz = =, + 52, = f, f € R}
specifies a family of straight lines iR . Each member of this

family can be obtained by settiig equal to some real number.
Thus, for exampley, + 52, = —5 21,4+ 529 = 0 , andbsz, =3
are three parallel lines belonging to the family.

22



Two-Dimensional Linear Programs

» Now, suppose that we try to choose several values for z,and
and observe how large we can mgke while still satisfying the
constraints on;; and . We first ry=1 and 3 . This
point satisfies the constraints. For this pojng 16 . If we now
selectz; =0 angh=5 |, then=25 and this point yields a
larger value forf than does=[1,3]" . There are infinitely
many pointsz,, 2o]!  satisfying the constraints. Therefore, we
need a better method than trial and error to solve the problem.

23



Two-Dimensional Linear Programs

» For the example above we can easily solve the problem using
geometric arguments. First let us sketch the constraims in
The region of feasible points (the set of poiats  satisfying the
constraintsdAz <b g >0 ) Is depicted by the shaded region in
this figure. Ao

» Geometrically, maximizing N
c'xz =z, + 52, subject to the .~ N
constraints can be thought of as
finding the straight line

f =+ 50 thatintersects the 1

shaded region and has the Iargeﬁ%_"

f. The pointo, 57 is the solution. IS N N
\\L% .

24 NS




Example

» Suppose that you are given two different types of concrete. The
first type contains 30% cement, 40% gravel, and 30% sand (all
percentages of weight). The second type contains 10% cement,
20% gravel, and 70% sand. The first type of concrete costs $5
per pound and the second type costs $1 per pound. How many
pounds of each type of concrete should you buy and mix
together so that your cost is minimized but you get a concrete
mixture that has at least a total of 5 pounds of cement, 3
pounds of gravel, and 4 pounds of sand?

25



Example

» The problem can be represented as

minimize cla

subject to Ax>b x>0

(0.3 0.1] (5|

c=01" A=10402 b= |3
0.3 0.7/ 4]

» Using the graphical method described above, we get a solution
of [0,50" , which means that we would purchase 50 pounds of
the second type of concrete.

» In some case, there may be more than one point of intersection,
and therefore any one of them is a solution.

26



Convex Polyhedra and Linear Programming

» We discuss linear programs from a geometric point of view.
The set of points satisfying these constraints can be represented
as the intersection of a finite number of closed half-spaces.
Thus, the constraints define a convex polytope.

» We assume, for simplicity, that this polytope is nonempty and
bounded. In other words, the equations of constraints define a
polyhedronys Irr» . Letr be a hyperplane of support of this
polyhedron. If the dimension af  is less than |, then the set

of all points common to the hyperplame  and the polyhedron
M coincides withas .

27



Convex Polyhedra and Linear Programming

» If the dimension ofy Is equal to , then the set of all points
common to the hyperplang and the polyhedron Is a face of
the polyhedron. If this face & — 1)  -dimensional, then there
exists only one hyperplane of support, namely, the carrier of
this face. If the dimension of the face is less than , then
there exist an infinite number of hyperplanes of support whose
Intersection with this polyhedron yields this face.

O-dimensional
face

1-dimensional
face

28



Convex Polyhedra and Linear Programming

» The goal of our linear programming problem is to maximize a
linear objective functiorf(z) = 'z = cjz1 + -+ + ¢z, on the
convex polyhedroms . Next, let be the hyperplane defined
by the equatiore’z =0 . Draw a hyperplane of support  to
the polyhedrons , which is parallel 0 = and positioned such
that the vectole points in the direction of the half-space that
does not contain/

I

\
\

29



Convex Polyhedra and Linear Programming

» The equation of the hyperplane has the fefm= g , and
forall x ¢ 4 ,we have’z <3 . Denotelsy the convex
polyhedron that is the intersection of the hyperplane of support
H with the polyhedrons . We now show tlfat is constanton
and thatrs is the set of all pointsin  for which  attains its
maximum value. To thisend, lgt amrd be two arbitrary

points in M/ . This implies that both and belongto
Hence,

fly)=cy=p8=c'z= f(z)
which means that Is
constant ons

I

\
\

30




Convex Polyhedra and Linear Programming

» Lety be apointofsr ,andlet be a pointof M , that Is,
z iS a point ofis that does not belong\to . Then,
c’e < f=cly
which implies thaf(z) < f(y)
» Thus, the values of at the pointsief  that do not belomg to

are smaller than the values at pointaof . Hehce, achieves
its maximum ony/ — at points iy

I

\
\

31
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Convex Polyhedra and Linear Programming

» It may happen thatZ  contains only a single point, in which
casef achieves its maximum at a unigue point.

» This occurs when the hyperplane of support passes through an
extreme point ofis .

32



Standard Form Linear Programs

» We refer to a linear program of the form

minimize cla

subject to Ax=b x>0
as a linear program standard form. HereA is anm x n
matrix composed of real entries,< n rank(A) =m

» Without loss of generality, we assume that o fa
component ob Is negative, say the th component, we
multiply the i th constraint by -1 to obtain a positive right-hand
side.

33



Standard Form Linear Programs

» Theorems and solution techniques for linear programs are
usually stated for problems in standard form. Other forms of
linear programs can be converted to the standard form.

» If a linear program is in the form

minimize clx

subject to Ax>b x>0

then by introducingurplus variables y;, we can convert the
original problem into the standard form

minimize ¢’z
subject to  a;1x1 + apxo + - -+ ajpx, — Y = b; 1=1,....m
x1 > 0,29 2>0,...,2, >0

y1 2 0,0 >0, ...,9, =0

34



Standard Form Linear Programs

» In more compact notation, the formulation above can be

represented as

minimize clax

subject to  Ax — I,y =1[A,—1I,] [z] =b
x>0 vy>0

wherer1,, isthe.xm identity matrix.

35



Standard Form Linear Programs

» If, on the other hand, the constraints have the form
Az <b x>0

then we Iintroducdack variables y; to convert the constraints

Into the form
Az + I,y =[A I, m ~b

x>0 vy=>0

wherey Is the vector of slack variables. Note that neither
surplus nor slack variables contribute to the objective funefian

36



Standard Form Linear Programs

» At first glace, it may appear that the two problems

minimize cla minimize elx

subject to Az > b subject to  Ax — I,y =1A, -1, [w] = b
x>0 Yy
x>0

>

are different, in that the first probleﬁf ’

refers to the intersection of half-spaces inithe -dimensional
space, whereas the second problem refers to an intersection of
half-spaces and hyperplanes in the- m) -dimensional space.
It turns out that both formulations are algebraically equivalent

In the sense that a solution to one of the problems implies a
solution to the other.

37



Example

4

Suppose that we are given the inequality constrairt7 . We
convert this to an equality constraint by introducing a slack
variable z, >0 to obtain, + 2o =725, >0

Consider the setg| = {7, : z; < 7} aned: {x;: 2 +a9="7:19 >0}
Are the setsC; and, equal? It is clear that indeed they are;
we give a geometric interpretation for their equality.

Consider a third set’; = {[z1, 20" : 21 + 20 =7, 25 > 0} . From this
figure we can see that the set consists of all points on the
line to the left and above the point pre

Intersection of the line with the \

z1-axiIs. A

Projection of Ca

onto x4-axis \

“ NWrONO®
RN TR T T
T

01234567 X4
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Example

» This set, being a subset®f |, is of course not the same set as
the set; (a subsetaf ). However, we can project thg set
onto thez; -axis. We can associate with each peaintc,

a point[z1,0/!  on the orthogonal projectioncpf  onto the
r1-axis, and vice versa. Note thed = {z; : [z, z0)! € O3} = C

Projection of Cg

. T x
onto x4-axis \ N

N\
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Example

» Consider the inequality constraints
a1 + asxs < b 1,29 2 U
wherea;,a,,b  are positive numbers. Again, we introduce a
slack variablers >0  to get
a1x1 + asxo +x3=>0 1, X9, x3 > 0

Define the sets

Ch = {[z1, zo]" : a1y + aswo < b, 1,29 > 0}

Cy = {[z1, 22|" : a1 + avxy + 23 = b, 21, 29, 23 > 0}

Cs = {[z1, 29, 23]" - 121 + asy + 25 = b, 21, 29, 253 > 0}
We again see that; is notthe samejas . However, the
orthogonal projection of;  onto the, z,)  -plane allows us to

associate the resulting set with the set

40



Example

» We associate the points,, z,, 0]" resulting from the orthogonal
projection ofCc; onto thér,z;) -plane with the points,in
NOte thath — {[$1, :BQ]T : [xl, xo, $3]T S Cg} — C]

X3
b
Cs
>
b X2
az
Projection of C5 onto
L the (x4,xp)-plane

X1 31

41



Example

» Suppose that we wish to maximize
f(z1,22) = 121 + o2
subject to the constraints
aj1ry + a1z < by

a911 + A20xy = by
X1,T2 Z O

where, for simplicity, we assume that eagh> ¢ are > 0
The set of feasible points is depicted in this figure. et r2
be the set of points satisfying the constraints.

A2

~ N Set of feasible points

\\ ~
42 NN

a11Xq+a12Xn< b|



Example

» Introducing a slack variable, we convert the constraints into

standard form: . .y,

a21%1 + 22T2 = by
2 >04i=123

» Let ¢, c R* Dbe the set of points satisfying the constraints. As
illustrated in this figure, this set is a line segmenk{in ). We
now projectc, onto thé;, =) -plane. The projected set
consists of the points,, 25,017, With, 25, 25)" € ¢, for some
z3 > 0. In this figure this set iIs marked ’
a heavy line in thé:;,z,) -plane. We ¢
associate the points on the projection
with the corresponding points
In the selo,

43 / g Projection of C, onto
2

an, (X4,X2)-plane




Example

» Consider the following optimization problem

maximize Xy — Iy
subject to  3x1 =29 — 5 2o <2 2, <0

» To convert the problem into a standard form linear
programming problem, we perform the following steps:

44

1. Change the objective function tahninimize x7 — x»
2. Substitute x; = —x
3. Write |z5] <2 agy <2 ane, <2

4. Introduce slack variables;, z,  , and conthee inequalities
above toxy + 23 =2 andxy + x4 =2

5. Write z9 =u —v,u,v >0



Example

» Hence, we obtain

45

minimize

subject to

— ) —u+v

3] +tu—v==
u—v+x3=2
V— U+ x4 = 2

513/1, u,v, T3, L4 Z 0



Basic Solutions

4

In the following discussion we only consider linear
programming problems in standard form.

Consider the system of equalitias = b , wheng(A) = m

In dealing with this system of equations, we frequently need to
consider a subset of columns of the masrix . For convenience,
we often reorder the columns.af so that the columns we are
Interested in appear first.

Specifically, letB  be a square matrix whose columnsiare
linearly independent columns af

46



Basic Solutions

» If necessary, we reorder the columnsaof  so that the columns
In B appear firstA  has the forn- [B, D , winere  Is an
m x (n —m) matrix whose columns are the remaining columns
of A. The matrixa is nonsingular, and thus we can solve the
equationBzz =b forthe. -veckgr . The solutionis
rp =B 'b. Letx bethe, -vector whose first  components
are equal tacz; and the remaining components are equal to
zero; that is,z = [z%,07]" . Theh, Is a solutioadc- b

47



Basic Solutions

4

Definition 15.1: We call; = %, 07]7 basic solutionto Az =1b
with respect to theasis B. We refer to the components of the
vectorz; adasic variablesand the columns oB  &asic
columns.

If some of the basic variables of a basic solution are zero, then
the basic solution is said to b&l@enerate basic solution.

» Avectorg satisfyingaz=b x>0 IS said to beagble

solution.

» A feasible solution that is also basic is calldshsc feasible

4

solution.

If the basic feasible solution is a degenerate basic solution, then
it is called adegenerate basic feasible solution.

Note that in any basic feasible solutiag,> 0

48



Example

» Consider the equatioaz = b

1 1 —-14 8
A = [a’laa'27a’37a’4] — [1 9 1 1] b= [2]

wherea, denotes the th column of the madrix
» Then, £ =16,2,0,0/ is a basic feasible solution with respect to

the basisB = [a1,a)] 5 =0,0,0,2]" IS a degenerate basic
feasible solution with respect to the baBis- [a;, a,] (as well
aslai,ay andy ay 2.=13,1,017 IS a feasible solution that

IS not basic, and: = [0, 2, —6, 0]” IS a basic solution with respect
to the basi®B = [ay,a;] , but is not feasible.

49



Example

» Consider the system of linear equations= b , Where
23 -1 -1 C[-1
A:Ll 1 —2] b= [9]

We now find all solutions of this system. Note that every

solutionz ofAx =5 has the form=v + h , Where isa
particular solution oo = and isa SO|U'[IOI§M10—

» We form the augmented matl[ix, b)  of the system

23 -1 -1 —1
[A’b]“[zu 1 -2 9]

Using elementary row operations, we transform this matrix into
the form given by

50



Example

» The corresponding system of equations is given by

5131—|— 333 l$4—%

3 11

Xro — 3333 = 5
» Solving for the leading unknowns amg , we obtain
1 —%—2$3+%$4
Ty = —% -+ %ﬂfg
wherez; and, are arbitrary real numberg; Iy, x5, 24" IS

a solution, then we have

14 1
ZC]_ ﬁ_ 8+t

CUQZ—E“FES
X3 =S
5134:t

where we have substituted and Jfor and |, respectively.

51



Example

» Using vector notation, we may write the system of equations

above as - . -
1 5 5 2
2| —% % " 0
0o 1 Bl I A R
_1’4_ i 0 i i 0 i _1_

» Note that we have infinitely many solutions, parameterized by
s,t € R. Forthe choice=t=0  we obtain a particular solution

to Az =b , given by - 14 7

i

— 5
v 0

0
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Example

» Any other solution has the form+h , where
. -
2 L

h=s + 1

C)l—\cnlco'
— O O

» The total number of possible basic solution is at most

" n! 4!
() = mln —m)l  21(4—2) 0

to find basic solutions that are feasible, we check each of the
basic solutions for feasibility.
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Example

4

Our first candidate for a basic feasible solution is obtained by
setting z; =z, =0 , which corresponds to the bBsiSa,, a,]
Solving Bz, =b , we obtaia; = [14/5, —11/5]7 , and hence

x = [14/5,—11/5,0,0]" IS a basic solution that is not feasible.
For our second candidate basic feasible solution, we set

2o = 24 = 0. We have the basB = [a,, a;] . Solvg; = b

yields x5 =[4/3,11/3]" . Hence=[4/3,0,11/3,0] IS a basic
feasible solution.

» Athird candidate basic feasible solution is obtained by setting

zo = x3 = 0. HOwever, the matrix
2 —1
B = [a17a4] - [4 _2]

IS singular. ThereforeB  cannot be a basis, and we do not have

-a basic solution corresponding®o= [a;, a;]



Example

4

We get our fourth candidate for a basic solution by setting
71 =124=0 We have a basB = [a,,a;] , resulting in
x =10,2,7,01", which is a basic feasible solution.

Our fifth candidate for a basic feasible solution corresponds to
settingz, = x3 =0 , with the bagss= [a,, a,

This results ine = [0, —11/5,0,-28/5]" , which is a basic solution
that is not feasible.

Finally, the sixth candidate for a basic feasible solution is
obtained by setting, =2, =0 . This results in the basis

B = [a3,a4), andz = [0,0,11/3, -8/3]" , which is a basic solution
but is not feasible.

55



Properties of Basic Solutions

» Definition 15.2: Any vector: that yields the minimum value
of the objective functior’z  over the set of vectors satisfying
the constraintdxz = b,z >0 , IS said to begimal feasible
solution. An optimal feasible solution that is basic is said to be
anoptimal basic feasible solution.

» Theorem 15.1Fundamental Theorem of LP. Consider a
linear program in standard form
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1. If there exists a feasible solution, then theasts a basic feasible
solution

2. If there exists an optimal feasible solutiomrtlihere exists an
optimal basic feasible solution.



Proof of Theorem 15.1

» Suppose that = [z;,....z,]" Is a feasible solution and it has
positive components. Without loss of generality, we can
assume that the first components are positive, whereas the
remaining components are zero. Then, in terms of the columns
of A=Jay,..,a, .., a,) ,thissolution satisfies

11 + 209 + -+ + TpQy = b
There are now two cases to consider.

» Case 1: lfay,as,...,a, are linearly independent, them. f
p = m, then the solutioe Is basic and the proof is done<If»
then, sinceank(A)=m , we can find p columns of  from

the remaining:. —p columns so that the resulting set of
columns forms a basis. Hence, the solutton is a (degenerate)
basic feasible solution corresponding to the basis above.
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Proof of Theorem 15.1

» Case 2: Assume that, a,, ..., a, are linearly dependent. Then,

there exist numbergs, i =1,....p , hot all zero, such that
y1a1‘|‘y2a2+"'+ypap:0
We can assume that there exists at leasyone that is positive,
for if all the y; are nonpositive, we can multiply the equation
above by -1. Multiply the equation by a scalar and subtract
the resulting equation froma, + rsa; + - - +z,a, = b to obtain
(1 —eyr)a) + (x2 — eyp)as + - - -+ (x, —eyy)a, = b

Let y = [y1,...,y,,0,....,0]" . Then, for any we can wijie— cy] = b
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Proof of Theorem 15.1

» Lete=min{x;/y; - i=1,....p,y; > 0} . Then, the first
components ofzt — ey  are nonnegative, and at least one of
these components is zero. We then have a feasible solution with
at mostp —1 positive components. We can repeat this process
until we get linearly independent columnsof , after which
we are back to case 1. Therefore, part 1 is proved.
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Proof of Theorem 15.1

» We now prove part 2. Suppose that [z, ..., z,|" IS an optimal
feasible solution and only the first  variables are nonzero.
Then, we have two cases to consider.

» The first case is exactly the same as part 1.

» The second case follows the same arguments as in part 1, but in
addition we must show that— ey IS optimal for any . We do
this by showing that”™y =0 . To this end, assumedhgat 0
Note that fore of sufficiently small magnitude
(e <man(|z;/yi| i =1,...p,y: #0)), the vectorz — ey is feasible.

We can choose such thét > ¢’z — ec’y = ¢l (x — ey . This
contradicts the optimality of . We can now use the procedure
from part 1 to obtain an optimal basic feasible solution from a
given optimal feasible solution.
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Example

» Consider the system of equations
23 -1 -1 -1
A:[zu 1 —2] b= [9]
Find a nonbasic feasible solution to this system and use the

method in the proof of the fundamental theorem of LP to find a
basic feasible solution.

» Recall that solutions for the system have the form

- 14 T - 27 17
I 5 —= =
_ 11

35
L2 _ 5 5
24 o | T 1
Ty 0 i 0 i

+1

—_ O O

6

. ' 1

wheres,t € R . Note thatdf=4,t =0 , thep= ;
0
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Example

» There are constants;,i = 1,2,3

» For example, lefy = —2, 42 =3, y3 =1
wherey = [—%,2,1,0]"

If e=1/3, then -

4
3
0
L1 =Ty — €Y = |11
3
0

IS a basic feasible solution.
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, such @Hﬁ@tl- Yoo + ysaz =0
. Note that, — cy) = b



Properties of Basic Solutions

» Observe that the fundamental theorem of LP reduces the task of
solving a linear programming problem to that of searching over
a finite number of basic feasible solution. That is, we need only
check basic feasible solutions for optimality.

» As mentioned before, the total number of basic solutions is at
most ; n!
(m) B m!(n —m)!
Although this number is finite, it may be quite large. For
example:(?) = 2118760
Therefore, a more efficient method of solving linear programs
IS needed. To this end, we next analyze a geometric

interpretation of the fundamental theorem of LP.
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Geometric View of Linear Programs

» Recallthata seb c R* Is said tocbravex if, for everyz,y € ©
and every real number,0 <a <1 ,the paat- (1 —a)y € ©
In other words, a set is convex If given two points in the set,
every point on the linear segment joining these two points is
also a member of the set.

» Note that the set of points satisfying the constramis- b, « > 0
IS convex. To see this, let,z,  satisfy the constraints. Then,
forall o € (0,1) ,Alaz; + (1 - a)xs) = aAz; + (1 —a)Axzy = b
Also, for o € (0,1) , we haver, + (1 — a)zy > 0
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Geometric View of Linear Programs

» Recall that a point in aconvex set Is said to extaeme
point of o if there are no two distinct poinis and ©in
such thate = ax; + (1 - o)z,  fOr some (0,1) . In other words,
an extreme point is a point that does not lie strictly within the
line segment connecting two other points of the set. Therefore,
Iif = is an extreme point, ang = ax; + (1 — o)z, for seamg € ©
and a € (0,1) , them, ==z, . In the following theorem we show
that extreme points of the constraint set are equivalent to basic

feasible solutions.
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Geometric View of Linear Programs

4

Theorem 15.2: Let  be the convex set consisting of all
feasible solutions, that is, all -vecior satisfy#ta=5b,x >0
where A ¢ R™" m<n . Then, Isanextreme pointof if
and only ifz Is a basic feasible solution4® = b,z > 0

Form this theorem, it follows that the set of extreme points of
the constraint set is equal to the set of basic feasible solutions.

Combining this observation with the fundamental theorem of
LP (Theorem 15.1), we can see that in solving linear
programming problems we need only examine the extreme
points of the constraint set.
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Example

» Consider the following LP problem

maximize 3x1 + 9o
subject to x1 4+ dx9 < 40

201 + 19 < 20
T+ r9 < 12
Ty, T2 20

We introduce slack variables, x4, x5 to convert this LP

problem into standard form
minimize — 321 — O
subject to 1 + bxy + x3 = 40
201+ x9 + 24 = 20
r1+ xo+ x5 = 12
X1,L9y ..., X5 >0
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Example

» In the remainder of the example we consider only the problem
In standard form. We can represent the constraints above as

1 5 1 0 0 [40]
1 |2 +x0 [1| +23 |0 + 24 |1| +25 |0 = |20
_1_ _1_ _0_ _O_ _1_ _12_
that IS, z1a, + z9a9 + 2303 + 404 + 505 = b, 2 > 0 . Note that

x = [0,0,40,20,12]" is a feasible solution. But for this , the
value of the objective function is zero. We already know that
the minimum of the objective function (if it exists) is achieved
at an extreme point of the constraint set defined by the
constraints. The poirt, 0, 40, 20, 12]7 IS an extreme point of the
set of feasible solutions, but it turns out that it does not
minimize the objective function.
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Example

» Therefore, we need to seek the solution among the other
extreme points. To do this we move from one extreme point to
an adjacent extreme point such that the value of the objective
function decreases. Here, we define two extreme points to be
adjacent if the corresponding basic columns differ by only one
vector.

» We begin withz = (0,0, 40, 20,12 . We have
0a; + 0asy + 40a3 + 20a4 + 12a; = b. TO select an adjacent extreme
point, let us choose to includg  as a basic column in the new
basis. We need to remove eithgr a, , as0r  from the old basis.
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Example

» We first express:; as a linear combination of the old basic
columns:a; = la; +2a4 + 1as . Multiplying both sides of this
equation bye, >0 , we geta; = e1a;3 + 2¢1a4 + €1a;

» We now add this equation to the equation

Oa; + O0asy + 40a3 + 20a4 + 12a; = b . Collecting terms yields

eraq + Oas + (40 — 61)a3 + (20 — 261)a4 + <12 — 61)&5 = b
We want to choose in such a way that each of the
coefficients above is nhonnegative and at the same time, one of
the coefficientsi; @, , @  becomes zero. Cleary]o
does the job. The result i8a; + 30a; + 2a; = b . The
corresponding basic feasible solution (extreme point) is
[10,0,30,0, 2", For this solution, the objective function value is
-30, which is an improvement relative to the objective function

7élalue at the old extreme point.



Example

» We now apply the same procedure as above to move to another
adjacent extreme point, which hopefully further decreases the
value of the objective function. This time, we choase to
enter the new basis. We hawe= ;a; + jas + 3as

and (10 — %62) a; + €ay + (30 — %62) as + (2 — %62) a;=>b

Substitutinge, =4 , we obtaba, + 4a, + 12a; = b

The solution iss,4,12,0,0/” and the corresponding value of the
objective function is -44, which is smaller than the value at the
previous extreme point.
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Example

» To complete the example we repeat the procedure once more.
This time, we seleck, and express it as a combination of the
vectors in the previous basis, a., , ahda, = a; — a, + 4a;
and hence

(8 —€e3)ar+ (4+€e3)ar + (12 — deg)as +e3a, = b
The largest permissible value fey  is 3. The corresponding
basic feasible solution is,7,0,3,0” , with an objective function
of -50. The solution[s,7,0,3,0/"  turns out to be an optimal
solution to our problem in standard form. Hence, the solution
to the original problem i$.7]7 , which we can easily obtain
graphically.
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Example

» The technigue used Iin this example for moving from one
extreme point to an adjacent extreme point is also used in the
simplex method for solving LP problems. The simplex method

IS essentially a refined method of performing these
manipulations. A2
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